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Measure Theory



The Problem of Measure

What would you say is the length of the interval [1, 3]?

λ([1, 3]) = 2.

How about [−3, 4] ∪ [5, 7]?

λ([−3, 4] ∪ [5, 7]) = 9.

If we are willing to work over the extended real line, we can
reasonably say that

λ((−∞, 2]) = +∞.

Finally, the “length” of a singleton set {a} is zero.
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The Problem of Measure

Now suppose you were asked to find the “length” of Q ∩ [0, 1].

There are two plausible answers to this:

(i) We declare the question as meaningless, and remain satisfied
with the idea that certain subsets of R do not have a
well-defined notion of length;

(ii) We claim that λ(Q ∩ [0, 1]) = 0.
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The Problem of Measure

Intuitively, a measure on Rn should be a function which maps
subsets of Rn to elements of [0,+∞].

Unfortunately, there is no way to consistently assign a measure to
every subset of Rn without running into paradoxes.

Instead, we restrict our attention to certain “measurable” subsets.
These will include virtually every subset we will ever care about, so
we are happy to make this small sacrifice.

Definition (σ-algebra)

Let X be a set. A σ-algebra A on X is a collection of subsets of X
such that:

(i) ∅ ∈ A;

(ii) A is closed under complements;

(iii) A is closed under countable unions.
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The Problem of Measure

Definition (Measure)

Let X be a set, and A a σ-algebra on X . A measure on (X ,A) is a
function µ : A → [0,+∞] such that:

(i) µ(∅) = 0;

(ii) If {En}n is a countable collection of pairwise disjoint sets in
A, then

µ

( ∞⋃
n=1

En

)
=

∞∑
n=1

µ(En).

The sets in A are called µ-measurable.
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The Lebesgue Measure

Let’s return to Rn. We wish to construct a measure that agrees
with and extends our intuitive notion of “volume”.

Theorem
There is a unique measure on Rn which is translation-invariant,
complete, and assigns measure 1 to the unit cube, [0, 1]n.

We call this the Lebesgue measure, and denote it by Ln.
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The Lebesgue Measure

The Lebesgue measure works great when we wish to measure
n-dimensional subsets of Rn.

However, we often wish to measure k-dimensional subsets of Rn,
where k < n. The measure Ln cannot tell them apart, so we need
something better.

Unfortunately, there is no longer an obvious choice of measure
which agrees with our intuitive notion of volume.
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The Hausdorff Measure

We choose to work with the k-dimensional Hausdorff (outer)
measure. We denote this by Hk and define it as follows:

Hk(A) := lim
δ↓0

Hk
δ (A), A ⊂ Rn

where, for each δ > 0, Hk
δ is defined by taking Hk

δ (∅) := 0, and

Hk
δ (A) := inf

∞∑
i=1

ωk

(
diamCi

2

)k

for any non-empty A ⊂ X . The infimum is taken over all countable
collections C1,C2, . . . of subsets of X such that diamCi < δ and
A ⊂

⋃∞
i=1 Ci . If no such collection exists, the right-hand side is

taken to be +∞.



Geometric Measure Theory



Densities

Let X be a metric space, µ an outer measure on X , and A a subset
of X . We define the n-dimensional density of µ at x ∈ A by

Θn(µ,A, x) := lim
ρ↓0

µ(A ∩ Bρ(x))

ωnρn
.

One can also define densities of measures with respect to other
measures. These appear extensively in various “differentiation
theorems” in GMT, and beyond.

Under certain assumptions on X , one can prove that the density
ratio

µ(A ∩ Bρ(x))

ωnρn

is an increasing function of ρ.
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Area Functional

For an open set Ω ⊂ R2 and a function u : Ω → R, the graph of u
is the set

Gu :=
{(

x , u(x)
)
∈ R3 : x ∈ Ω

}
.

We wish to impose some condition on u which ensures that the
“area” of Gu is well-defined. One possibility is to require that u is
locally Lipschitz on Ω.

The area functional, by definition, assigns to this graph its area.
We have that

A[u] :=

∫
Ω

√
1 + |∇u|2.

Much like with functions on R, we can ask what the critical points
of this functional are.
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Minimal Surfaces

A surface S is a 2-dimensional (topological) manifold. In
particular, we do not assume that S is smooth.

A minimal surface is a critical point of the area functional. Note
that a minimal surface does not actually need to minimise area.
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Embeddedness

A minimal surface will, in general, contain branch points. A
natural next step therefore, is to find sufficient conditions which
guarantee that a minimal surface is smoothly embedded.

Meeks and Yau proved that if Γ = ∂M lies on the boundary of a
convex set, then the minimal disc spanning Γ must be smoothly
embedded.

We now show that Γ having total curvature at most 4π is another
such sufficient condition. For this we will need the following key
result:
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Extended Monotonicity Theorem

Theorem
Suppose that M is a compact 2-dimensional minimal submanifold
of Rn, n > 2, with rectifiable boundary Γ := ∂M. Consider a point
p ∈ Rn, and let E = E (Γ, p) denote the exterior cone with vertex p
over Γ:

E :=
⋃
q∈Γ

{tq + (1− t)p : t ⩾ 1}.

Let M ′ = M ∪ E . Then the density ratio

H2(M ′ ∩ B(p, r))

πr2

is an increasing function of r , for all r > 0. That is,

d

dr

(
H2(M ′ ∩ B(p, r))

πr2

)
⩾ 0,

with equality if and only if M ′ is a cone.
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Interior Regularity

We are now ready to show that the interior of a minimal surface is
embedded and free of branch points.

This is a proof by contradiction, and relies on the following three
facts:

1. The density of M at an interior point p is bounded above by
the density at p of the cone subtended by ∂M;

2. The density at p of this cone is at most 1/2π times the total
curvature of ∂M;

3. The density of M at any interior branch point is at least 2.

The first statement is a consequence of extended monotonicity.
The second statement follows from the Gauß–Bonnet theorem.
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The Fáry–Milnor Theorem

From the previous embeddedness theorem, the Fáry–Milnor
theorem follows as a simple corrolary. This is a fundamental result
linking the geometry and topology of a simple closed curve in R3.
It was proven independently by István Fáry in 1949 and by John
Milnor in 1950.

Corollary (Fáry–Milnor)

Let Γ be a simple closed curve in R3 with total curvature at most
4π. Then Γ is unknotted.
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